PROGRESS: Beginning to Understand the Genetic Predisposition to PSC

Konstantinos N. Lazaridis, MD
Associate Professor of Medicine
Division of Gastroenterology and Hepatology

Associate Director
Center for Individualized Medicine
Mayo Clinic College of Medicine
Primary Sclerosing Cholangitis
PSC

• In 1924, Delbet described the first case of PSC

• Early 1980’s first PSC case-series reports in medical literature
 Drs. R. Wiesner, N. LaRusso, Mayo Clinic, USA
 Dr. R. Chapman, United Kingdom

• To date, etiology of PSC remains unknown

• No medical therapy available
What is the cause of PSC?
Proposed Pathogenesis of PSC?

Genetic Predisposition

Environment
PSC and IBD

~1 x 10^6 cases in US

IBD

~30,000 cases in US

75% PSC with IBD

25% PSC with no IBD
PSC is a Heterogeneous Disease
How can we find the causes of PSC?
PSC is a Complex Disease

Gene A

Gene B

...Gene X

Environmental risks

PSC
Rationale for Studying Genetic Predisposition to PSC

Identify genetic susceptibility of PSC

- Novel diagnostics
 - Prevention

- Biological defect
 - New therapies

- Assess disease progression
PROGRESS
(PSC Resource Of Genetic Risk Environment & Synergy Studies)

Established in 2005

• To better understand the cause(s) and pathogenesis of PSC

• To improve prediction and therapy of PSC
PROGRESS
(PSC Resource Of Genetic Risk Environment & Synergy Studies)

- Whole blood collection
 biochemical testing
 DNA isolation
 cell-line creation

- Questionnaire data

- Family information (draw pedigrees)
PROGRESS

Study Requirements

• Read and sign a consent form

• Complete a questionnaire and a family information form

• Provide a sample of your blood

• Recipients of liver transplant are not excluded

• No need to visit Mayo Clinic to participate
PROGRESS - Database Enrollment

PSC Proband Demographics Form

Study ID#
- [] Exclude From Study
- [] Pedigree has been created

Study Group: []
Recruitment Source: []
Mony Clinic #: []

Personal Information

- **Initials**: []
- **FirstName**: []
- **MI**: []
- **LastName**: []
- **Nickname**: []
- **Sex**: []

- **Date of Birth**: []
- **Race**: []
- **Specify Other Race**: []

- **Home Phone #**: []
- **Alt. Phone #**: []
- **Deceased**: []
- **DOD**: []

- **Street Address**: []
- **City**: []
- **State**: []
- **Zip Code**: []
- **Region**: []

Recruitment Status

Consent Form
- [] Mailed
- [] Received
- [] Response

Medical Questionnaire
- [] Mailed
- [] Received

Specimen Kit
- [] Mailed
- [] Received

Pediatric Kit
- []

Follow Up Contacts

<table>
<thead>
<tr>
<th>#</th>
<th>Study ID #</th>
<th>Date</th>
<th>Reason for Follow-Up</th>
<th>Results / Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>StudyID</th>
<th>Aik Pess</th>
<th>ALT</th>
<th>AMA</th>
<th>Thy Roc Ab</th>
<th>Thypert Ab</th>
<th>TSH</th>
<th>T4</th>
<th>Bilirubin</th>
<th>Creatinine</th>
<th>LabsType</th>
</tr>
</thead>
</table>

Sample Processing
- [] DNA
- [] SC
- [] SEV

Notes: []

Lab Results
PROGRESS - Database Phenotypes

Personal Information
- **Study ID#**
- **Exclude From Study**
- **Deceased**
- **DOD**

- **Study Group**
- **Recruitment Source**
- **Mayo Clinic #**

<table>
<thead>
<tr>
<th>Initials</th>
<th>First Name</th>
<th>MI</th>
<th>Last Name</th>
<th>Sex</th>
<th>Date of Birth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSC History
- **KNL Chart Review**
- **Year of Dx**
- **Evidence of PSC**
- **Disease Location**
- **ERCP**: Date
- **MRCP**: Date
- **PTC**: Date

- **Concurrent Disease Assessment**
 - **Chart Reviewed**
 - **Last Clinic Visit**
 - **IBD**: Year, Type
 - **CCA**: Year, Location
 - **OLT**: Date

- **Notes**

PSC Proband Disease Phenotyping
PROGRESS Enrollment by State

Mayo Clinic - Rochester, MN
U Indiana, IN
Virginia Mason Clinic, WA
U Pittsburgh, PA

Mt Sinai Medical Center, NY
Virginia Commonwealth U, VA
Johns Hopkins U, MD
U Toronto, ON, Canada
PROGRESS: Recruitment by Medical Center

<table>
<thead>
<tr>
<th>Medical Center</th>
<th>Consent</th>
<th>DNA</th>
<th>Questionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayo Clinic</td>
<td>807</td>
<td>651</td>
<td>661</td>
</tr>
<tr>
<td>U. Indiana</td>
<td>106</td>
<td>105</td>
<td>95</td>
</tr>
<tr>
<td>U. Toronto, CA</td>
<td>51</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>U. Pittsburgh</td>
<td>42</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>V.M. Clinic</td>
<td>40</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>V.C.U.</td>
<td>18</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Mt. Sinai, NY</td>
<td>33</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>Johns Hopkins</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total collaboration(^a)</td>
<td>292</td>
<td>280</td>
<td>220</td>
</tr>
<tr>
<td>Total (all centers)</td>
<td>1,099</td>
<td>931</td>
<td>881</td>
</tr>
</tbody>
</table>

\(^a\) Includes collection of 300 PSC DNAs from G.H and P. D. and 50 PSC DNAs from Poland.
Aim 1: To expand PROGRESS, by:

- Continuing recruitment of PSC patients at Mayo Clinic
- Initiating referral of patients to PROGRESS by our external collaborators
- Fostering existing relationships with international PSC and IBD study groups
PROGRESS NIDDK Grant - Specific Aims

Aim 2: Genomic Wide Association Studies (GWAS)

Susceptibility to PSC

- Unaffected Controls (5000)
- PSC Patients (2000)
- UC Patients no PSC (1000)

Susceptibility to PSC in UC

Replication

- 1900 PSC – 3000 Controls
- 1330 PSC with UC – 1000 UC no PSC

Existing genotypes; IBDGC: IBD genetics consortium; NOPSC: Norwegian PSC Research Center; UKPSC: UK PSC Consortium
To determine environmental risk factors for PSC by performing a study of 1000 patients and 1000 controls utilizing the self-administered questionnaire data collected by PROGRESS.
Outcome in PSC-UC Patients Homozygous for MMP3 rs522616 and rs650108 Genetic Variants

Juran et al., Liver International 2011
Immunochip Experiment

• 196,524 Single Nucleotide Polymorphisms (SNPs)

• 186 genetic loci with known autoimmune diseases associations
International PSC Immunochip Study

<table>
<thead>
<tr>
<th>Origin</th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>163</td>
<td>1,425</td>
</tr>
<tr>
<td>Canada</td>
<td>323</td>
<td>0</td>
</tr>
<tr>
<td>Finland</td>
<td>308</td>
<td>504</td>
</tr>
<tr>
<td>France</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Germany</td>
<td>852</td>
<td>5,435</td>
</tr>
<tr>
<td>Netherlands</td>
<td>255</td>
<td>3,421</td>
</tr>
<tr>
<td>Norway</td>
<td>504</td>
<td>1,412</td>
</tr>
<tr>
<td>Poland</td>
<td>43</td>
<td>541</td>
</tr>
<tr>
<td>Spain</td>
<td>27</td>
<td>284</td>
</tr>
<tr>
<td>Sweden</td>
<td>282</td>
<td>2,665</td>
</tr>
<tr>
<td>UK</td>
<td>1,121</td>
<td>8,970</td>
</tr>
<tr>
<td>USA</td>
<td>533</td>
<td>681</td>
</tr>
</tbody>
</table>

Total: 4,456 cases and 25,338 controls
Exome Sequencing of a Family
Hypothesis and AIM

• We hypothesized that families with multiple members affected by PSC might carry rare genetic polymorphisms.

• We aimed to perform exome sequencing and analysis in this multiply-affected PSC family as a pilot to inform future large-scale efforts.
A Novel Genetic Variant of ABCB4 Gene in Pedigree #5139

<table>
<thead>
<tr>
<th>SNP</th>
<th>gene_name1</th>
<th>daughter1</th>
<th>father</th>
<th>mother</th>
<th>daughter2</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs31653(A/G)</td>
<td>ABCB4</td>
<td>hom</td>
<td>hom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs31668(G/A)</td>
<td>ABCB4</td>
<td>hom</td>
<td>hom</td>
<td>hom</td>
<td>hom</td>
</tr>
<tr>
<td>rs2230029(T/C)</td>
<td>ABCB4</td>
<td></td>
<td></td>
<td></td>
<td>het</td>
</tr>
<tr>
<td>(G/A) R595X</td>
<td>ABCB4</td>
<td>het</td>
<td>het</td>
<td>het</td>
<td>het</td>
</tr>
<tr>
<td>rs2109505(T/A)</td>
<td>ABCB4</td>
<td>het</td>
<td></td>
<td>het</td>
<td></td>
</tr>
<tr>
<td>rs1202283(G/A)</td>
<td>ABCB4</td>
<td>het</td>
<td>hom</td>
<td></td>
<td>het</td>
</tr>
<tr>
<td>rs2302367(G/A)</td>
<td>ABCB4</td>
<td>het</td>
<td></td>
<td>het</td>
<td></td>
</tr>
</tbody>
</table>
Defects in ABCB4 are known to cause a wide range of heritable cholestatic syndromes and contribute to cholelithiasis

- Progressive Familial Intrahepatic Cholestasis 3
- Intrahepatic Cholestasis of Pregnancy
- Low Phospholipid Associated Cholelithiasis
- PSC
Physiopathology of ABCB4 Deficiency

A. Bile salts
ABCB11
ABCB4
Phosphatidylcholine
Hepatocyte
Cholangiocytes (bile duct epithelia)

PC + BS – Mixed Micelles

B. Bile salts
ABCB11
ABCB4
Phosphatidylcholine

Lower PC – BS toxicity
Pedigree #5139

- Pedigree branch:
 - 200 57
 - 300 30/53
 - 401 52
 - 402 32
 - 403 35
 - 404 51
 - 405 48
 - 406 46

- Genetic markers:
 - Small duct
 - Ovarian ca

- Medical conditions:
 - Primary Sclerosing Cholangitis (PSC)
 - Orthotopic Liver Transplantation (OLT)
 - Inflammatory Bowel Disease (IBD)
 - Gallstone Disease (GSD)
Conclusions from Pedigree #5139

- The R595X mutation in ABCB4 is likely a strong contributor to the severe liver disease in this family.

- Exome sequencing of mother’s siblings will help to better define the contribution of the R595X mutation to PSC.

- Exome or Whole Genome Sequencing in the near future will improve the diagnosis and therapy of PSC.
PROGRESS Future Studies

• Whole Exome Sequencing in Selected TRIOs (affected patient and unaffected parents)

• Gene x Environment interaction studies

• Genomic-based disease outcome studies (prediction of disease progression)
Acknowledgements

- PSC patients and family members
- PSC Partners Seeking A Cure
- NIDDK RO1 grant (2011-2015)
- A. J. Sigismunda Palumbo Charitable Trust
- American Liver Foundation
- Mayo Clinic College of Medicine
- Division of Gastroenterology and Hepatology Mayo Clinic
Exome Sequencing

- **Exome enrichment**: Agilent SureSelect system

- **Sequencer**: Applied Biosystems SOLID v4
 (All 4 DNAs sequenced on single slide, 50bp run)

- **Alignment to reference genome** (hg18): BioScope

- **Polymorphism calling**: BioScope diBayes and SAMtools pileup

- **Filtering and Annotation**: In-house tools
Filtering

Filter #1: SNPs present in all 3 affected individuals
Non-synonymous cSNP or splice-site
Not in dbSNP, 1000 genomes freq <0.01
Total # SNPs – 84

Filter #2: SNPs in cholestasis candidate genes
Total # SNPs – 61

Overlap: 1 nonsense SNP/variant in MDR3 or ABCB4 (R595X)
Primary Sclerosing Cholangitis